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Trapped to free: A mechanism to spatiotemporal chaos
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and Institute of Low Energy Nuclear Physics, Beijing Normal University, 100875 Beijing, China
~Received 30 November 1998!

We further investigate the crisis-induced transition from temporal chaos~TC! to spatiotemporal chaos~STC!
due to collision between the unstable orbit of a carrier saddle steady wave~SSW! and the attractor of its
perturbation wave~PW! @Kaifen He, Phys. Rev. Lett.80, 696~1998!#. In the present work, the influence of the
SSW on its PW is studied in different dimensions. It is found that in our case, as a result of mode-mode
couplings only one dimension becomes crucial in the onset of crisis. The state transition of the PW mode phase
in this dimension at the crisis is emphasized. Before the crisis, all the PW partial waves are trapped in the SSW
state. After the crisis, the PW partial wave in this dimension is free from the trapping of the SSW partial wave;
it experiences on-off resonance with the latter, which is responsible for the transition to STC.
@S1063-651X~99!06605-2#

PACS number~s!: 05.45.2a, 41.20.Jb, 47.27.2i, 52.35.2g
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I. INTRODUCTION

A mechanism for the onset of turbulence has attrac
much attention in recent years@2–4#. As pointed out in Ref.
@5#, the question of what is the actual mechanism of tran
tion from laminar to turbulent motion is the most natural o
we should try to answer, and when discussing turbulence
should speak of space-time chaos. Both time-chaos~TC
state! and space-time chaos~STC state! are erratic in their
time evolutions, so the essential difference between them
manifested in their spatial behaviors. How and why a
state transits to a STC state is an interesting problem
answer would be significant for our understanding of
onset of turbulence. In previous work@1#, for a nonlinear
wave system we found that the motion can display a sh
transition from a TC to a STC state, and a crisis@6–9# is
responsible for the transition. The mechanism for the on
of the crisis in Ref.@1# can be summarized by the followin
points. A necessary condition for its occurrence is the e
tence of a saddle steady wave solution~a saddle point!. If the
saddle wave is perturbed, for the linear perturbation one
find stable and unstable orbits. When taking into acco
nonlinearity of the perturbation, its modes can build up a g
solitary wave which is trapped by the saddle steady wa
The motion of the gap solitary wave can bifurcate into
chaotic attractor. If the chaotic attractor collides with t
saddle point, crisis occurs, which leads to very turbulent m
tion in contrast to the more laminarlike one before the cris

In the present work we study the mechanism furth
Since a partial differential system such as that considere
Ref. @1# has infinitely many dimensions, it would be signifi
cant to know whether all the dimensions are important in
onset of the crisis, or if only one or a few dimensions pla
crucial role. When analyzing the problem, a wave solution
divided into a saddle steady wave~SSW! and a perturbation
wave ~PW!, as we did before. The PW is scattered at
carrier SSW; its motion is influenced by the latter as well
by its own nonlinearity. In the present work, such influenc
will be studied in respective dimensions. The paper is or
nized as follows. Section II is the formalism and releva
PRE 591063-651X/99/59~5!/5278~7!/$15.00
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phenomena of the transition from TC to STC. In Sec. III w
discuss the linear motion of PW under the influence of c
rier SSW; the role of PW mode phases in the evolution
mode amplitudes is stressed. In the subsequent section
nonlinearity of PW is taken into account. In Sec. IV w
briefly introduce the mechanism for the onset of the cri
reported in Ref.@1#. In Sec. V we demonstrate that indee
one dimension may play a crucial role in the onset of
crisis. By further investigating the transition of the mod
phase in the crisis, we conclude that it is the on-off resona
between the PW and SSW partial waves in this dimens
that is responsible for the turbulent motion in the STC sta
Finally, Sec. VI contains the discussion.

II. TRANSITION FROM TC TO STC STATE

The following driven/damped nonlinear drift-wave equ
tion is used as our model:

]f

]t
1a

]3f

]t]x2
1c

]f

]x
1 f f

]f

]x
52gf2e sin~x2Vt !,

~1!

where the 2p boundary condition is applied anda5
20.287,c51.0, f 526.0, andg50.1 are fixed throughou
the paper.$V,e% are two control parameters. We focus on
steady wave solutions of saddle type~SSW! f0* (x2Vt).
Here the subscript 0 denotes steady wave and the ast
superscript denotes saddle type. The wave energy of the

tem isE(t)5(1/2p)*0
2p 1

2 @f22a(]f/]t)2#dx.
As reported in Ref.@1#, we find that solutions of Eq.~1!

may display a transition from a TC to a STC state. Here
terminology ‘‘transition’’ has two meanings. First, for give
V there exists a critical pointe5ec for the transition; before
and after the point the asymptotic states of the system
dynamically different. For instance, if we setV50.65, the
critical point isec.0.20. Whene50.19, asymptotically the
solution of Eq.~1! is of TC type, but whene50.20 or larger
the asymptotic state is of STC type. Second, beyond
5278 ©1999 The American Physical Society
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critical point,e.ec , with fixed (V,e) the time evolution of
the system can show a sharp transition from a TC to a S
state.

As an example, Fig. 1 presents a sequence of space-
patterns displaying such a transition forV50.65,e50.22.
The results are obtained by solving Eq.~1! with a pseu-
dospectral method. First, the motion is displayed as a la
narlike TC state, as Fig. 1~a! shows. Its time evolution is
chaotic, but spatially it is regular. While it is a transie
period in the time evolution~if the initial condition is prop-
erly chosen!, the motion may stay in this TC state for a rath
long time before it suddenly transits to a STC state. Fig
1~b! exhibits the space-time pattern just around the criti
transition time. One can see very clearly how a laminarl
pattern is destroyed, which finally leads to a STC state. F
ure 1~c! is the asymptotic pattern of the motion, very turb
lent. It is a STC state, chaotic in time and erratic in spac

Here we did not present the example of the asymptotic
state fore<ec ~e.g.,e50.19), for its pattern is roughly the
same as that of Fig. 1~a!.

The TC and STC states as given in Fig. 1 sh
qualitatively different spatial behaviors. Figure 2 gives t
time averages of wave-number spectra,̂f2(k)&
51/M @( i 51

M f2(k,t i)#, for ~a! TC state,~b! STC state, which
are the same as in Fig. 1. Heref(k) is the spatial Fourier
transform off(x). As can be seen from Fig. 2~a!, for a TC
state the spectral strength decreases exponentially,^f2(k)&
;e2ak with a51.56'3/2, while in Fig. 2~b!, for a STC
state, the spectrum follows a power law,^f2(k)&;k2b, here
b52.43'5/2.

FIG. 1. Space-time patterns off(x,t) for ~a! TC state, ~b!
around the critical transition time,~c! STC state forV50.65,e
50.22.
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In order to test the above results, we have used two
ferent methods. One is to solve Eq.~1! by a pseudospectra
method, the other is to solve two sets of mode equati
derived from Eq.~1! which we will describe in the follow-
ing. To obtain Fig. 1 we used the former method, but in R
@1# the space-time patterns are obtained by the latter one.
two methods give qualitatively the same results. In parti
lar, the laws followed by the wave-number spectra from
two methods are in good agreement with each other, res
tively, for TC and STC states. This fact convinces us that
analysis for the mechanism in the following sections, wh
is based on the two sets of equations, is valid.

When transformed toj5x2Vt,t5t , a steady wave
f0(j) satisfies the steady equation]f0(j)/]t50. By ex-
pandingf0(j)5(k51

` f0,k(j)[(k51
` Ak cos(kj1uk) we get a

set of coupled algebraic equations from the steady equa

2k@c2~12ak2!V#Ak sinuk1gAk cosuk

2
k f

4 S (
i 1 j 5k

AiAj sin~u i1u j !1 (
i 2 j 5k

AiAj sin~u i2u j !

1 (
j 2 i 5k

AiAj sin~u j2u i ! D 50,

~2!

2k@c2~12ak2!V#Ak cosuk2gAk sinuk1ed1,k

2
k f

4 S (
i 1 j 5k

AiAj cos~u i1u j !1 (
i 2 j 5k

AiAj cos~u i2u j !

1 (
j 2 i 5k

AiAj cos~u j2u i ! D 50.

Here and in Eqs.~4!, k51,2, . . . ,N→`. For given (V,e),
Eqs.~2! can be solved to give the solutionf0(j).

FIG. 2. Averaged spatial spectra,^f2(k)&, of ~a! TC state,~b!
STC state for the same case as Fig. 1,V50.65,e50.22.
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5280 PRE 59KAIFEN HE
Setting f(j,t)5f0(j)1df(j,t), one obtains the fol-
lowing equation fordf from Eq. ~1!:

]

]t S 11a
]2

]j2D df2V
]

]j S 11a
]2

]j2D df1c
]df

]j
1gdf

1 f
]

]j
@f0~j!df#1 f df

]df

]j
50. ~3!

Expanding df into Fourier modes, df(j,t)
5(k51

` dfk(j,t)[(k51
` bk(t)expi@kj1ak(t)#1c.c., one can

calculatedf(j,t) by solving the following set of ordinary
differential equations:

dbk

dt
52

g

12ak2
bk1

f k

2~12ak2!

3H (
i 1 j 5k

[Aibj sin(u i1a j2ak)

1bibj sin(a i1a j2ak)]

1 (
i 2 j 5k

[Aibj sin(u i2a j2ak)

1bibj sin(a i2a j2ak)]

1 (
j 2 i 5k

[Aibj sin(2u i1a j2ak)

1bibj sin(a j2a i2ak)] J ,

~4!

dak

dt
52kS c

12ak2
2V D 2

f k

2~12ak2!bk

3
H (

i 1 j 5k
@Aibj cos~u i1a j2ak!

1bibj cos~a i1a j2ak!#

1 (
i 2 j 5k

@Aibj cos~u i2a j2ak!

1bibj cos~a i2a j2ak!#

1 (
j 2 i 5k

@Aibj cos~2u i1a j2ak!

1bibj cos~a j2a i2ak!#J .

Equations~2! and ~4! are the two sets of equations we us
to analyze the mechanism for the transition from TC to ST
In this treatment, no approximation is made. As mention
above, the results from these equations~with appropriate
truncationN) are qualitatively the same as those obtained
solving Eq.~1! with a pseudospectral method.

Generally speaking, as can be seen from Eqs.~3!, except
for the linear dispersion, the motion ofdf is influenced by
two effects arising from the system nonlinearity: being sc
.
d

y

t-

tered at the carrier wave,f0(j), and the nonlinearity ofdf.
In particular, if the steady wave is of saddle type~SSW!,
f0* (j), the two effects cooperate in such a special way t
they may cause a crisis-induced transition from TC to ST
As a first step, in the next section we discuss the linear
sponse of PWdf when scattered at the SSWf0* (j), from
which one can see the important role played by the m
phases ofdf.

III. PHASE-LOCKING STABLE/UNSTABLE ORBITS
OF LINEAR PERTURBATION MODES AT SSW

Now we calculate the linear orbit of PW scattered a
SSW. One way to show that a SW is of saddle type is
calculate the eigenvalues of PW modes. In general all
eigenvalues are complex conjugates. If one pair of eigen
ues is real, one positive, and one negative, saddle-node
furcation occurs@10#; we refer to the steady wave as SSW
Obviously in this case there is only one unstable directi
However, this unstable direction projects onto every dim
sion in the phase space. In the present section, we calc
the stable and unstable orbits~SO and UO! of PW in respec-
tive dimensions by solving Eqs.~2! and Eqs.~4! in a linear
approximation with respect todf(j) @i.e., we neglect the
nonlinear term~s! of df or of $bk%; in this section, when
mentioning Eqs.~4! we always mean their linear approxima
tions#. Here we should point out that, as can be seen fr
Eqs.~4!, even the nonlinear terms of$bk% are neglected and
the modes$bk ,ak% are still coupled with each other throug
the modes off0 , $Ak ,uk%.

We start from a chosen SW atV50.65,e50.22; from
eigenvalue analysis we already know that it is a saddle ty
f0* (j). From Eqs.~4! with tiny initial df(j) we calculate
the linear evolution ofdf scattered at carrierf0* (j). As is
well known, a saddle point has SO as well as UO. In the c
of UO, the amplitudesbk increase exponentially with time a
expected; however a remarkable result is that the m
phasesak approach a set of constants$ak

U%. This phenom-
enon can be seen in Fig. 3~a!, which gives the temporal evo
lutions of ak(t) at SSWf0* (j) for k5123; one can see
that the phasesak quickly adjust to their respective con
stants. On the other hand, when reversing the time varia
one can follow the SO’s backward to infinite amplitude
Surprisingly, in this case the phasesak also approach a set o
constants$ak

S%, which is different from$ak
U% . This can be

seen in Fig. 3~b!, where the phasesak start from the resulting
values of Fig. 3~a!; with time going to negative infinity they
evolve to another set of constants. Notice that in every
mensionk there are two UO’s, but along both of them th
mode phasesak evolve asymptotically to the same set
constants. Similarly, in every dimension there are two SO
along which the phasesak approach another set of consta
values.

From these results one can see that when scattere
SSW the linear PW mode phases have two stagnation po
$ak

S% and$ak
U%. The orbit can be either stabilized or destab

lized depending on which point the mode phases are
tracted to. Since the phases of the carrier wavef0* (j), uk’s,
are constants, the relative phases (ak

S,U2uk) are also invari-
able in every dimension. In fact, it is the phase differen
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(ak2uk) that plays an important role in driving or dampin
the PW mode amplitude. Physically speaking, since PW
scattered by carrier SSW, its mode amplitudes are driven
by the carrier if all the relative phases take the ‘‘favorab
values,’’ say,$ak

U2uk%; in contrast, if they take the ‘‘unfa-
vorable values,’’$ak

S2uk%, the mode amplitudes are dampe
by it. This phase-difference-related driving/damping effe
causes the linear UO/SO of the saddle wave. When the n
linearity of df is included, PW mode phases still play a
important role. This fact can be seen in Sec. V. Before
dressing this point, for the sake of comparison let us brie
introduce in the next section the crisis that causes the tra
tion of TC to STC.

IV. CRISIS DUE TO COLLISION TO THE SADDLE
POINT

In this and the following sections we calculate Eqs.~2!
and the full Eqs.~4!, that is, taking into account the nonline
term with respect todf in Eqs. ~3! @and Eqs.~4!#. In this
case, the evolution ofdf(j,t) displays a crisis of hetero
clinic tangency with the saddle point, leading to the tran
tion from a TC to a STC state. Let us describe this pheno
enon with a series of solutions in$V,e% parameter space.

After taking into account the nonlinearity with respect
df, the PW mode amplitudes no longer go to infinity;
certain cases the modes can build up a solitary wave, w
can be called a gap solitary wave@11,12#. In this case, the
PW energy

dE~t!5(
k

dEk5(
k

~12ak2!

3@Akbk cos~uk2ak!/21bk
2/4# ~5!

tends to a constant. Figure 4 shows such an example foV
50.56,e50.07. Figure 4~a! is the evolution ofdE(t); Fig.

FIG. 3. ~a! Time evolution~unstable orbit! and~b! reversed time
evolution ~stable orbit! of ak(t) when PW is linearly scattered a
carrierf0* (j) with V50.65,e50.22, k5123.
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4~b! is the asymptotic wave form ofdf(j) ~1! in which
f0* (j) (,) is also drawn. One can see that the gap solit
wavedfg(j) is trapped in the potential well off0* (j).

As the parameters are varied, the gap solitary wave lo
stability. In Fig. 5,dEk52(t) versusdEk51(t) are plotted,
where one can see how the crisis occurs due to heteroc

FIG. 4. A gap solitary wave built up by PW modes.~a! Time
evolution of PW ‘‘energy’’dE at SSWf0* (j); ~b! asymptotic gap
solitary wavedfg(j) (1) trapped inf0* (j) (,) for V50.56,e
50.07.

FIG. 5. Development of heteroclinic tangency in phase p
dEk52 vs dEk51 with SSWf0* (j) at ~a! V50.56,e50.07; ~b! V
50.60,e50.11; ~c! V50.625,e50.16; ~d! V50.65,e50.22. The
PW orbits are drawn by solid lines; bullets and circles denote
stable and unstable orbits of SSW.
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5282 PRE 59KAIFEN HE
tangency. In all the plots the carriers are chosen as sa
type. The bullets denote the linear SO’s and the circles
note the linear UO’s. In Fig. 5~a! @the same case as Fig. 4 fo
V50.56,e50.07] the gap solitary wave is displayed as
fixed point ~see ‘‘1 ’’ !. As the parameters are changed, t
fixed point bifurcates to the limit cycle@Fig. 5~b! for V
50.60,e50.11]. The limit cycle gets larger and a little ch
otic @Fig. 5~c! for V50.625,e50.16]. Finally, in Fig. 5~d!
the chaotic attractor collides with the linear unstable orbit
SSW ~heteroclinic tangency!, and the crisis occurs. One ca
see that at first the orbit travels in a small chaotic attractor
a while before suddenly jumping to a larger and much m
chaotic one. When in the small attractor, the motion show
TC state as in Fig. 1~a!, while in the larger attractor the
motion behaves as STC in Fig. 1~c!.

V. STATE TRANSITION OF ONE PW MODE
AND ON-OFF RESONANCE IN STC

The mechanism of the transition to STC has been sho
to be a crisis of heteroclinic tangency. Now the question
what happens before/after the crisis at different dimensio
In this section we calculate the motion of a partial wave
PW in respective dimensions and study its relation to tha
SSW, again by solving Eqs.~2! and the full Eqs.~4!. We will
demonstrate that one dimension plays a crucial role in
transition. For the present parameters, this dimensionk
51. Further, by studying the state transition of the PW mo
phase in this dimension at the crisis, we show that on
resonance between the PW and SSW partial waves is res
sible for the turbulent motion after crisis.

In Fig. 6 we plot thek51 partial wave of PW,

dfk~j,t!5bk~t!cos@kj1ak~t!#, ~6!

and that of SSW,

f0,k* ~j!5Ak cos~kj1uk!. ~7!

In the plots, triangles denote the SSW partial wa
f0,k51* (j), and bullets denote the PW partial waves at diff
ent times,dfk51(j,t). ~a! is before the crisis,~b! after the
crisis. In the (j,t) frame the carrier wavef0,k51* (j) is mo-
tionless. One can see very clearly that while the P
dfk51(j,t) varies with time, its motion is strongly influ
enced by the existence off0,k51* (j). In Fig. 6~a!, before the
crisis ~TC state!, the amplitudes ofdfk51(j,t) remain
smaller than its carrierf0,k51* (j) and are trapped in the po
tential well provided by it. However, dramatic change occ
after the crisis~STC state!. This can be seen in Fig. 6~b!, in
which the amplitude ofdfk51(j,t) can be much larger tha
that off0,k51* (j). It is no longer trapped by the carrier parti
wave. If we consider the PW partial wave as a ‘‘particle,’’
seems now to become a ‘‘free particle’’ that can go over
barrier of the carrier wave, in contrast to before the cris
when the ‘‘particles’’ are well confined by the potential.

Figure 7 shows the motion of a partial wave ofk52 as an
example in dimensions other thank51; again~a! is in a TC
state and~b! in a STC state. In both cases the peaks
dfk52(j,t) are well trapped in the valley off0,k52* (j), and
on averagedfk52(j,t) is antiphased with its carrier. Th
le
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FIG. 6. Motion of partial wavedfk51(j,t) (d) in partial wave
f0,k51* (j) (,) for ~a! TC state,~b! STC state; the same case as
Figs. 1 and 2,V50.65,e50.22.

FIG. 7. Motions of partial wavesdfk52(j,t) (d) in partial
wavef0,k52* (j) (,) for ~a! TC state,~b! STC state; the same cas
as in Figs. 1 and 2.
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only difference between Figs. 7~a! and 7~b! is that in the
latter case the amplitudes ofdfk52(j,t) can be comparable
to that of carrierf0,k52* (j). The other highk modes have
similar behavior.

In comparing Figs. 6 and 7 with Fig. 5~d! one can see tha
Figs. 6~a! and 7~a! correspond to the small attractor befo
crisis in Fig. 5~d!, while Figs. 6~b! and 7~b! correspond to the
larger and more chaotic one.

From the above results we realize that not all the dim
sions are crucial for the dramatic change in the transition
our case onlyk51 is crucial for the qualitatively differen
dynamics after crisis. However, here we should stress
such a critical role ofk51 is a result of the cooperation o
all the modes due to the system nonlinearity.

Now let us concentrate on the ‘‘key dimension’’k51.
Recall in Sec. III in a linear approximation that we ha
shown that the phases of PW modes have a significant e
on their amplitude evolutions. Depending on the differe
phase-locking values, the orbits can be either stabilized
destabilized. When the nonlinearity ofdf is included, we
would expect that the PW partial wave amplitudes sho
also be influenced by their phases or, more precisely, by
phase differences between the PW and SSW partial wav

To clarify this problem, we study the PW amplitudebk(t)
versus the phase differenceak(t)2uk between PW and
SSW fork51. The results are plotted by bullets in Fig. 8:~a!
includes the results before the crisis and a few points at
critical moment of crisis~see the branch shooting up!; ~b! is
after the crisis, in which mode (2p,p) has been taken~so
for clarity we did not connect the orbit points by lines!. The
dashed line gives the amplitude of the carrier partial wa
Ak51. On the abscissa the two crosses indicate the stagna
phase pointsak51

S,U ~minus uk51) of the linear SO/UO, re-
spectively~see Sec. III!.

A remarkable difference can be seen when compa
Fig. 8~a! with Fig. 8~b!. In the first place, in accordance wit
Fig. 6, in Fig. 8~a! before the crisisbk51(t) remains smaller
than the carrier amplitudeAk51. Then at the critical momen
when the crisis occurs,bk51(t) suddenly increases and su
passesAk51. After the crisis in Fig. 8~b!, bk51(t) can be
much larger thanAk51. Furthermore, possibly more essent
change occurs in the phaseak51(t) after crisis. In Fig. 8~a!

FIG. 8. bk(t) vs ak(t)2uk for k51. ~a! The same case as i
Figs. 1~a! and 1~b!, ~b! the same case as in Fig. 1~c!. The dashed
line gives Ak51. The two crosses on the abscissa indicateak51

S,U

2uk51 .
-
n

at

ct
t
or

d
e

s.

e

,
ion

g

l

the phase differenceak51(t)2uk51 is confined within a re-
gime, ak51

U ;,ak51(t),;ak51
S . In the plot ak51(t) li-

brates chaotically as that of a pendulum with chaotica
varying length. In contrast, in Fig. 8~b! the variation of phase
ak51(t) can go over 2p. In this case, while it librates cha
otically, the ‘‘pendulum’’ also begins to whirl irregularly. To
clarify the problem it is instructive to look at the equation f
ak in Eqs.~4!. The motion ofak is governed by two factors
the first term on the right-hand side of the equation cau
linear rotation, and the other terms arise from a nonlin
effect. Those terms arising from the system nonlinearity a
include two parts, one being contributions from the intera
tion between SSW and PW~SP terms! and the other from the
self-nonlinearity of PW~PP terms!. If bk’s are small, the
motion of ak is governed mainly by the first term, so
rotates. With the increase ofbk’s, the nonlinear effect plays a
more and more important role. In the case of a gap solit
wave as given in Fig. 4~b!, an equilibrium is arrived at and
the ak’s become constants. If thebk’s increase further, the
nonlinear effect dominates and the fixed point ofak loses
stability, which leads to the TC state. However, in this ca
the SP terms still dominate the PP terms; the PW par
wave is nevertheless trapped by that of SSW. When the c
occurs, the amplitude of one PW partial wave,bk51(t), for
the first time surpassesAk51 @see the vertically extending
branch in Fig. 8~a!#; the PP terms can be comparable to
even stronger than the SP terms. In this case,ak51 may once
again become whirling. In our case, after the crisis the wh
ing belongs to the latter one dominated by PW se
nonlinearity. It is a complicated motion combining chao
libration with rotation. We would like to refer to this a
nonlinear whirling in order to distinguish it from the whirlin
that occurs in weak nonlinearity, e.g., in Ref.@13#. Conse-
quently, the crisis essentially causes a transition of one
mode phase, from a state of chaotic libration to a combi
tion of chaotic libration and whirling.

It is realized that the PW motion is coupled with carri
SSW, so roughly speaking in the case of nonlinear whirl
we have the following picture: the PW partial wav
dfk51(j,t) chaotically ‘‘passes through’’ the carrier partia
wavef0,k51(j) with the amplitude comparable to the latte
Therefore, the relative phaseak51(t)2uk51 can take ran-
dom values in the whole range (2p,p). Since the ampli-
tudes of two waves can compete with each other, it provi
a possibility for them to become resonant. In Fig. 8~b! one
can see that in a certain regime of phase difference~approxi-
mately betweenak51

U andak51
S ), the PW partial wave can be

strongly increased. On average, its amplitudebk51 is larger
than the carrier oneAk51, while in the remaining regime the
amplitudes are smaller thanAk51. This phenomenon sug
gests that, as in the linear case of Sec. III, phaseak or phase
differenceDk5ak2uk plays a significant role. In the favor
able regime ofDk51, the amplitudebk51 is increased by the
carrier partial wave. In this case, if in addition their amp
tudes are comparable, the two waves,dfk51(j,t) and
f0,k51* (j), are approximately in resonance; on the oth
hand, in the unfavorable regime,dfk51 is damped by the
latter, and they are not in resonance. As this process rep
again and again, the amplitude ofdfk51 is pushed up and
down randomly by the potential of the carrier partial wav
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This phenomenon indicates that a kind of on-off resona
occurs between thek51 PW partial wave and the SSW pa
tial wave, which is responsible for the spatiotemporal chao
motions after the crisis.

On the other hand, the other modesk52,3,4, . . . do not
show such a dramatic difference before and after the cr
Either before or after the crisis, the PW partial wave amp
tudes remain smaller than those of the corresponding S
modes.

Whene,ec , e.g.,e50.19, the motion of thek51 partial
wave is similar to Fig. 6~a!, which will not be presented here

VI. DISCUSSION

In the present work we further investigated the mec
nism of crisis-induced transition to STC that is relevant
the existence of a saddle point in a nonlinear wave sys
solution. Linear stable and unstable orbits of SSW are sho
to be phase-locked, respectively. When the full nonlinea
is considered, we find that the crisis also induces a s
transition of one mode phase. Before the crisis, all the pa
waves of PW are well trapped in that of the carrier SS
to
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-
W

-
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respectively, while after the crisis one PW partial wave
free from the confinement of SSW; it experiences rand
on-off resonance with the latter. It is concluded that th
on-off resonance is responsible for the turbulent behavio
the STC state.

In the parameter regime we are concerned with in
present work, one dimension turns out to be crucial in
onset of a crisis as a result of mode-mode couplings. Ho
ever, it does not exclude the fact that with parameter va
tions other dimensions may also display qualitatively diffe
ent behaviors, such ask51, before and after crisis. If this
happens, it would cause more and more complicated tu
lent motions.
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