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Trapped to free: A mechanism to spatiotemporal chaos
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We further investigate the crisis-induced transition from temporal cfiE@sto spatiotemporal chadSTC)
due to collision between the unstable orbit of a carrier saddle steady (&8} and the attractor of its
perturbation wavéPW) [Kaifen He, Phys. Rev. Let80, 696(1998]. In the present work, the influence of the
SSW on its PW is studied in different dimensions. It is found that in our case, as a result of mode-mode
couplings only one dimension becomes crucial in the onset of crisis. The state transition of the PW mode phase
in this dimension at the crisis is emphasized. Before the crisis, all the PW partial waves are trapped in the SSW
state. After the crisis, the PW partial wave in this dimension is free from the trapping of the SSW partial wave;
it experiences on-off resonance with the latter, which is responsible for the transition to STC.
[S1063-651%99)06605-2

PACS numbg(s): 05.45:-a, 41.20.Jb, 47.2%i, 52.35—¢

[. INTRODUCTION phenomena of the transition from TC to STC. In Sec. Il we
discuss the linear motion of PW under the influence of car-
A mechanism for the onset of turbulence has attractedier SSW, the role of PW mode phases in the evolution of
much attention in recent yeaf8—4]. As pointed out in Ref. mode amplitudes is stressed. In the subsequent sections the
[5], the question of what is the actual mechanism of transinonlinearity of PW is taken into account. In Sec. IV we
tion from laminar to turbulent motion is the most natural onebriefly introduce the mechanism for the onset of the crisis
we should try to answer, and when discussing turbulence or€ported in Ref[1]. In Sec. V we demonstrate that indeed
should speak of space-time chaos. Both time-chék@  One dimension may play a crucial role in the onset of the
state and space-time chadSTC statg are erratic in their  Crisis. By further investigating the transition of the mode
time evolutions, so the essential difference between them ighase in the crisis, we conclude that it is the on-off resonance
manifested in their spatial behaviors. How and why a TCbetween the PW and SSW partial waves in this dimension
state transits to a STC state is an interesting problem; itdat is responsible for the turbulent motion in the STC state.
answer would be significant for our understanding of theFinally, Sec. VI contains the discussion.
onset of turbulence. In previous wofk], for a nonlinear
wave system we found that the motion can display a sharp Il. TRANSITION FROM TC TO STC STATE
transition from a TC to a STC state, and a crigs-9] is ) ) ) )
responsible for the transition. The mechanism for the onset The following driven/damped nonlinear drift-wave equa-
of the crisis in Ref[1] can be summarized by the following tion is used as our model:
points. A necessary condition for its occurrence is the exis-

tence of a saddle steady wave solutiarsaddle point If the dg At dd do )

saddle wave is perturbed, for the linear perturbation one can 5 T8 - — 5 +C— +T¢—=—yd—esinx—Qu),

. . N atax X X

find stable and unstable orbits. When taking into account )

nonlinearity of the perturbation, its modes can build up a gap
solitary wave which is trapped by the saddlg steady. Wave; e the 2 boundary condition is applied and=
The motion of the gap solitary wave can bifurcate into a _ _ _ :
. . . . —0.287,c=1.0,f=-6.0, andy=0.1 are fixed throughout
chaotic attractor. If the chaotic attractor collides with the X
the paper{(}, e} are two control parameters. We focus on its

saddle point, crisis occurs, which leads to very turbulent mo-

. *ro
tion in contrast to the more laminarlike one before the crisis.Steady wave solutions of saddle typBSW ¢ (x—Q1).

In the present work we study the mechanism further Here thg subscript 0 denotes steady wave and the asterisk
Since a partial differential system such as that considered inUPerscript denotes saddie type. The wave energy of the sys-
Ref.[1] has infinitely many dimensions, it would be signifi- tem isE(t) = (1/2m) [573[ $>— a(d ¢/ at)?]dx.
cant to know whether all the dimensions are important in the As reported in Ref[1], we find that solutions of Eq(1)
onset of the crisis, or if only one or a few dimensions play amay display a transition from a TC to a STC state. Here the
crucial role. When analyzing the problem, a wave solution igerminology “transition” has two meanings. First, for given
divided into a saddle steady wa{®SW) and a perturbation (2 there exists a critical poird= €., for the transition; before
wave (PW), as we did before. The PW is scattered at theand after the point the asymptotic states of the system are
carrier SSW; its motion is influenced by the latter as well asdynamically different. For instance, if we sé&t=0.65, the
by its own nonlinearity. In the present work, such influencescritical point is e.=0.20. Whene=0.19, asymptotically the
will be studied in respective dimensions. The paper is orgasolution of Eq.(1) is of TC type, but where=0.20 or larger
nized as follows. Section Il is the formalism and relevantthe asymptotic state is of STC type. Second, beyond the
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FIG. 2. Averaged spatial spectrap?(k)), of (a) TC state,(b)
STC state for the same case as Fig()l 0.65¢=0.22.

t In order to test the above results, we have used two dif-
ferent methods. One is to solve Ed) by a pseudospectral
method, the other is to solve two sets of mode equations

FIG. 1. Space-time patterns af(x,t) for (a) TC state, (b) derived from Eq.(1) which we will describe in the follow-
around the critical transition timelc) STC state for(Q)=0.65¢ ing. To obtain Fig. 1 we used the former method, but in Ref.
=0.22. [1] the space-time patterns are obtained by the latter one. The
critical point, e e, , with fixed (2, €) the time evolution of two methods give qualitatively the same results. In particu-

the svstem can show a sharo transition from a TC to a STC" the laws followed by the wave-number spectra from the
statey P Wwo methods are in good agreement with each other, respec-

As an example, Fig. 1 presents a sequence of space-tin’;%{ely' for TC and STC states. This fact cqnvinces_ us that .the
patterns displayin'g such a transition for=0.65¢=0.22. gnalysus for the mechanism in the' foIIovymg sections, which
The results are obtained by solving Ed) with a pseu- IS based on the two sets of equations, is valid.
dospectral method. First, the motion is displayed as a lami- When transformed t=x—Qt,7=t , a steady wave
narlike TC state, as Fig.(4 shows. Its time evolution is $o() satisfies thooe steady equthWo(g)/ﬂTzo- By ex-
chaotic, but spatially it is regular. While it is a transient Pandingeo(&) ==, _; dox(£) =Zy-1A¢ Coské+ ) we get a
period in the time evolutiofif the initial condition is prop- ~ set of coupled algebraic equations from the steady equation,
erly chosel, the motion may stay in this TC state for a rather 5 )
long time before it suddenly transits to a STC state. Figure —klc—(1—ak?)Q]Acsind+ yA, cogy
1(b) exhibits the space-time pattern just around the critical Kf
transition time. One can see very clearly how a laminarlike _ ™" A i O LB A cin O B,
pattern is destroyed, which finally leads to a STC state. Fig- 4 iﬂzzk AA; sIn(6, + 0J)+i42=k A sin(6, = 6,)
ure 1(c) is the asymptotic pattern of the motion, very turbu-
lent. It is a S_TC state, chaotic in time and erratic in space. + 2 AA; sin(6,— 6) | =0,

Here we did not present the example of the asymptotic TC jST=k
state fore<e. (e.g_., €=0.19), for its pattern is roughly the )
same as that of Fig.(8).

The TC and STC states as given in Fig. 1 show —k[c—(1—ak?)Q]A, cost— YA, Sin O+ €1
qualitatively different spatial behaviors. Figure 2 gives the
time averages of wave-number spectra,¢?(k)) kf D
=1M[=M, $?(k,t;)], for (a) TC state(b) STC state, which 4
are the same as in Fig. 1. Heggk) is the spatial Fourier
transform of(x). As can be seen from Fig(&, fora TC £y
state the spectral strength decreases exponent{@f(k)) -
~e € with a=1.56~3/2, while in Fig. 2b), for a STC
state, the spectrum follows a power lalg?(k))~k~#, here  Here and in Egs(4), k=1,2,... N—c. For given (,¢),
B=2.43~5/2. Egs.(2) can be solved to give the solutiaby(£).

AA cod 6+ 0))+ > AAcod b~ 6;)
k i-j=k

7=

A|AJ cog 01_ 0,) =0.
k

j-i=
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Setting ¢(&,7)= do(€) + 0¢p(&,7), one obtains the fol- tered at the carrier wavesg(£), and the nonlinearity 0b¢.
lowing equation for6¢ from Eq. (1): In particular, if the steady wave is of saddle tyf®SW),
o5 (£), the two effects cooperate in such a special way that

2 they may cause a crisis-induced transition from TC to STC.

98¢
1+a—|6p+c—r+ vy

J 52 9
—| 1+a—|8p—Q—

oT 9&2 e 0&2 P As a first step, in the next section we discuss the linear re-
sponse of PWs¢ when scattered at the SSW (&), from
d d6¢ which one can see the important role played by the mode
Expanding &8¢ into  Fourier modes, J&8¢(&,7)
=Eleﬁqﬁk(&T)EEQKO:1bk(T)expi[k§+ak(7')]+c.c., one can IIl. PHASE-LOCKING STABLE/UNSTABLE ORBITS
calculate5¢(£,7) by solving the following set of ordinary OF LINEAR PERTURBATION MODES AT SSW
differential equations: Now we calculate the linear orbit of PW scattered at a
SSW. One way to show that a SW is of saddle type is to
%:_ Y b+ fk calculate the eigenvalues of PW modes. In general all the
dr 1—ak? k 2(1-ak?) eigenvalues are complex conjugates. If one pair of eigenval-

ues is real, one positive, and one negative, saddle-node bi-

% 2 [Aib; sin(8; + a; — ) furcation occurg10]; we refer to the steady wave as SSW.

i£]=k Obviously in this case there is only one unstable direction.
) However, this unstable direction projects onto every dimen-
+bibj sin(e; + a;— ay)] sion in the phase space. In the present section, we calculate
the stable and unstable orb{80O and UQ of PW in respec-
+ > ) [Aib; sin(6;— a;— ay) tive dimensions by solving Eq$2) and Eqgs.(4) in a linear
i—j=

approximation with respect té¢(£) [i.e., we neglect the
nonlinear terns) of 8¢ or of {b,}; in this section, when
mentioning Eqs(4) we always mean their linear approxima-
) tions|. Here we should point out that, as can be seen from
+j;=k [Aib; sin(= 6+ aj— a) Egs.(4), even the nonlinear terms ¢b,} are neglected and
the modegb,,«,} are still coupled with each other through
) the modes ofpg, {Ax, 0}
+bib; S'”(“J_“i_“k)]}' We start from a chosen SW & =0.65¢=0.22; from
4) eigenvalue analysis we already know that it is a saddle type,
b5 (£). From Egs.(4) with tiny initial 5¢(£) we calculate

+ blb] Sin(ai - ak)]

day C fk the linear evolution ofS¢ scattered at carriegg (£). As is
dar k 2 T o vk well known, a saddle point has SO as well as UO. In the case
T 1-ak 2(1—ak?)by . . : o
of UO, the amplitude$, increase exponentially with time as
expected; however a remarkable result is that the mode
% HJEZK [Aibj cod 6+ aj— ay) phasesw, approach a set of constarfta}. This phenom-
enon can be seen in Fig(é, which gives the temporal evo-
+bib; cog o+ aj— ay) | lutions of a(7) at SSW ¢ (£) for k=1—3; one can see
that the phasesy, quickly adjust to their respective con-
+ 2 [Aib; cog 6 — a; — ) stants. On the other hand, when reversi.ng. the time yariable,
i~T=k one can follow the SO’s backward to infinite amplitudes.

Surprisingly, in this case the phasesalso approach a set of
constants ey}, which is different from{a}’} . This can be
seen in Fig. ®), where the phases, start from the resulting
+ 2 [Aibj cog— 6+ a; — ay) values of Fig. 8a); with time going to negative infinity they
Joimk evolve to another set of constants. Notice that in every di-
mensionk there are two UQ’s, but along both of them the
+bibjcotaj—ai—a)]|. mode phasesy, evolve asymptotically to the same set of
constants. Similarly, in every dimension there are two SO’s,
Equations(2) and (4) are the two sets of equations we used@long which the phases, approach another set of constant
to analyze the mechanism for the transition from TC to STCVvalues.
In this treatment, no approximation is made. As mentioned From these results one can see that when scattered at
above, the results from these equatigméth appropriate SSW the linear PW mode phases have two stagnation points,
truncationN) are qualitatively the same as those obtained byl @i} and{ay’}. The orbit can be either stabilized or destabi-
solving Eq.(1) with a pseudospectral method. lized depending on which point the mode phases are at-
Generally speaking, as can be seen from Egjs.except tracted to. Since the phases of the carrier wagé¢), 6,’s,
for the linear dispersion, the motion &% is influenced by are constants, the relative phase§'k’— 0,) are also invari-
two effects arising from the system nonlinearity: being scat-able in every dimension. In fact, it is the phase difference

+bibj COS(ai—aj—ak)]
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FIG. 3. (a) Time evolution(unstable orbjtand(b) reversed time
evolution (stable orbit of a,(7) when PW is linearly scattered at 03
carrier ¢§ (£) with Q=0.65¢=0.22, k=1-3.
_0‘5 L L L 1 L L
. . L. . 0 1 2 3 4 5 6
(ax— 6,) that plays an important role in driving or damping x

the PW mode amplitude. Physically speaking, since PW is
scattered by carrier SSW, its mode amplitudes are driven Up FiG. 4. A gap solitary wave built up by PW modes) Time

by the carrier if all the relative phases take the “favorableeyolution of PW “energy” SE at SSWe? (£); (b) asymptotic gap
values,” say{ay — 6,}; in contrast, if they take the “unfa- solitary wave S¢y(&) (+) trapped ingg () (V) for =0.56¢

vorable values, ] ag— 6,}, the mode amplitudes are damped =0.07.

by it. This phase-difference-related driving/damping effect

causes the linear UO/SO of the saddle wave. When the nonyp) is the asymptotic wave form 0d$(&) (+) in which

linearity of §¢ is included, PW mode phases still play an #% (&) (V) is also drawn. One can see that the gap solitary

important role. This fact can be seen in Sec. V. Before ady, /o Sby(£) is trapped in the potential well abZ (¢)
g .

Qressing this point, for th? sake of.c.omparison let us brieﬂy. As the parameters are varied, the gap solitary wave loses
introduce in the next section the crisis that causes the transé'tability In Fig. 5, 5E,_,(7) versussE,_(7) are plotted

tion of TC to STC. where one can see how the crisis occurs due to heteroclinic

IV. CRISIS DUE TO COLLISION TO THE SADDLE 008
POINT @0=56 (b) 0=0.60
opa| €007 ,° [ €=0.11 |
In this and the following sections we calculate E@®. L .
and the full Eqs(4), that is, taking into account the nonlinear £ o Q{ i ! % .
term with respect taS¢ in Egs. (3) [and Egs.(4)]. In this © * ot D ™.
case, the evolution ob¢(¢&,7) displays a crisis of hetero- 004 | i
clinic tangency with the saddle point, leading to the transi-
tion from a TC to a STC state. Let us describe this phenom- & . -
enon with a series of solutions {f),e} parameter space. (c)a=0625 - @ 0-=085
After taking into account the nonlinearity with respect to 004 RN =
6¢, the PW mode amplitudes no longer go to infinity; in  « A
certain cases the modes can build up a solitary wave, whichy™ °{ {
can be called a gap solitary way#1,12. In this case, the ol
PW energy
R YRy P ooz 004-00+ 002
SE(1)=2 OE=2. (1-ak) ..

) FIG. 5. Development of heteroclinic tangency in phase plot.
X [Agby cos O — a) 12+ b /4] (5 5B, vs SE,_; with SSW ¢ (£) at (8) Q=0.56¢=0.07; (b) O
=0.60£=0.11; (c) 2=0.625¢=0.16; (d) 1=0.65¢=0.22. The
tends to a constant. Figure 4 shows such an exampl€ for Pw orbits are drawn by solid lines; bullets and circles denote the
=0.56¢=0.07. Figure 4a) is the evolution ofSE(7); Fig.  stable and unstable orbits of SSW.
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tangency. In all the plots the carriers are chosen as saddle
type. The bullets denote the linear SO’s and the circles de-
note the linear UO's. In Fig.(®) [the same case as Fig. 4 for ]
0 =0.56¢=0.07] the gap solitary wave is displayed as a & 01
fixed point(see “+"). As the parameters are changed, the *ﬁd 3
fixed point bifurcates to the limit cyclg¢Fig. 5b) for () - i
=0.60¢=0.11]. The limit cycle gets larger and a little cha- ™~ 44|
otic [Fig. 5(c) for 1=0.625¢=0.16]. Finally, in Fig. %d)

the chaotic attractor collides with the linear unstable orbit of
SSW (heteroclinic tangengy and the crisis occurs. One can
see that at first the orbit travels in a small chaotic attractor for
a while before suddenly jumping to a larger and much more
chaotic one. When in the small attractor, the motion shows a
TC state as in Fig. (&), while in the larger attractor the S
motion behaves as STC in Fig(cL

V. STATE TRANSITION OF ONE PW MODE S N
AND ON-OFF RESONANCE IN STC

*
B o

1

The mechanism of the transition to STC has been shown ;gx o1 !
to be a crisis of heteroclinic tangency. Now the question is .
what happens before/after the crisis at different dimensions.
In this section we calculate the motion of a partial wave of
PW in respective dimensions and study its relation to that of ) 0
SSW, again by solving Eq§2) and the full Eqs(4). We will
demonstrate that one dimension plays a crucial role in the
transition. For the present parameters, this dimensiok is  FIG. 6. Motion of partial waveS¢y—1(¢,7) (@) in partial wave
=1. Further, by studying the state transition of the PW modepox-1(§) (V) for () TC state,(b) STC state; the same case as in
phase in this dimension at the crisis, we show that on-offigs. 1 and 202=0.65¢=0.22.
resonance between the PW and SSW partial waves is respon-
sible for the turbulent motion after crisis.

In Fig. 6 we plot thek=1 partial wave of PW,

Opi(§,7)=by(1)cogké+ ay(7)], (6)
and that of SSW,

d’g,k( &)=Acodké+0,). 7) *.e‘o

In the plots, triangles denote the SSW partial wave, %"
dox=1(€), and bullets denote the PW partial waves at differ-
ent times,é¢-1(&,7). (@ is before the crisis(b) after the
crisis. In the €,7) frame the carrier waveyg,_,(£) is mo-
tionless. One can see very clearly that while the PW
Spy=1(&,7) varies with time, its motion is strongly influ-
enced by the existence df,_,(¢). In Fig. 6@a), before the
crisis (TC state, the amplitudes ofd¢,—1(&,7) remain
smaller than its carriepg,_,(¢) and are trapped in the po-
tential well provided by it. However, dramatic change occurs
after the crisigSTC statg This can be seen in Fig(§), in "
which the amplitude ob¢,-1(£,7) can be much larger than
that of b5, 1(£). It is no longer trapped by the carrier partial &
wave. If we consider the PW partial wave as a “particle,” it
seems now to become a “free particle” that can go over the
barrier of the carrier wave, in contrast to before the crisis,
when the “particles” are well confined by the potential.
Figure 7 shows the motion of a partial wavekst 2 as an
example in dimensions other thérs1; again(a) isina TC
state and(b) in a STC state. In both cases the peaks of FiG. 7. Motions of partial wavesie,_,(£,7) (@) in partial

S¢r=2(§,7) are well trapped in the valley abg—(§), and  wave ¢%,_,(£) (V) for (a) TC state,(b) STC state; the same case
on averaged¢,-»(&,7) is antiphased with its carrier. The as in Figs. 1 and 2.
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the phase differencey_,(7) — 6¢—, is confined within a re-

(a) TC gime, af_;~<ay_1(7)<~aj_,. In the plota,_(7) li-
f brates chaotically as that of a pendulum with chaotically
02l 1 \.. varying length. In contrast, in Fig(B) the variation of phase
= \';’ \ ar-1(7) can go over Zr. In this case, while it librates cha-
5 “" \ otically, the “pendulum’ also begins to whirl irregularly. To

clarify the problem it is instructive to look at the equation for
ay in Egs.(4). The motion ofay is governed by two factors:
the first term on the right-hand side of the equation causes
linear rotation, and the other terms arise from a nonlinear
effect. Those terms arising from the system nonlinearity also
include two parts, one being contributions from the interac-
tion between SSW and PY®P term$and the other from the
~ self-nonlinearity of PW(PP termg If b, 's are small, the
_FIG. 8.b(7) vs ay(7)— 6 for k=1. (@) The same case as in yqtion of @, is governed mainly by the first term, so it
Figs. _](a) and ib), (b) the same case as in F'g(.cl T.he .daShed rotates. With the increase bf’s, the nonlinear effect plays a
line givesA,_;. The two crosses on the abscissa |nd|ca&£1 . .
ey, more and more |mportant role. In .th('a case of agap solitary
wave as given in Fig. @), an equilibrium is arrived at and
only difference between Figs.(& and 7b) is that in the the a,’s become constants. If the’s increase further, the
latter case the amplitudes 6, _,(£,7) can be comparable nonlinear effect dominates and the fixed pointaaf loses
to that of carrier¢yg,_,(£). The other highk modes have stability, which leads to the TC state. However, in this case
similar behavior. the SP terms still dominate the PP terms; the PW partial
In comparing Figs. 6 and 7 with Fig(& one can see that wave is nevertheless trapped by that of SSW. When the crisis
Figs. §a) and Ta) correspond to the small attractor before occurs, the amplitude of one PW partial wabg, ;(7), for
crisis in Fig. %d), while Figs. &b) and 7b) correspond to the the first time surpasse,_; [see the vertically extending
larger and more chaotic one. branch in Fig. 8)]; the PP terms can be comparable to or
From the above results we realize that not all the dimeneven stronger than the SP terms. In this cage,; may once
sions are crucial for the dramatic change in the transition. Igain become whirling. In our case, after the crisis the whirl-
our case onlik=1 is crucial for the qualitatively different ing belongs to the latter one dominated by PW self-
dynamics after crisis. However, here we should stress thatonlinearity. It is a complicated motion combining chaotic
such a critical role ok=1 is a result of the cooperation of libration with rotation. We would like to refer to this as

3 ]
ak=1(T)- k=

1

all the modes due to the system nonlinearity. nonlinear whirling in order to distinguish it from the whirling
Now let us concentrate on the “key dimensio=1. that occurs in _vv_eak nonl_inearity, e.g., in REj._B]. Conse-
Recall in Sec. Ill in a linear approximation that we have quently, the crisis essentially causes a transition of one PW

shown that the phases of PW modes have a significant effegtode phase, from a state of chaotic libration to a combina-
on their amplitude evolutions. Depending on the differenttion of chaotic libration and whirling.

phase-locking values, the orbits can be either stabilized or It is realized that the PW motion is coupled with carrier
destabilized. When the nonlinearity @ is included, we SSW, so roughly speaking in the case of nonlinear whirling
would expect that the PW partial wave amplitudes shouldve have the following picture: the PW partial wave
also be influenced by their phases or, more precisely, by thé¢c-1(£,7) chaotically “passes through” the carrier partial
phase differences between the PW and SSW partial wavesvave ¢q—1(&) with the amplitude comparable to the latter.

To clarify this problem, we study the PW amplitudg(r) ~ Therefore, the relative phasg._,(7) — 6, can take ran-
versus the phase difference(7)— 6, between PW and dom values in the whole range-(r, 7). Since the ampli-
SSW fork=1. The results are plotted by bullets in Fig(8  tudes of two waves can compete with each other, it provides
includes the results before the crisis and a few points at tha possibility for them to become resonant. In Figo)8one
critical moment of crisigsee the branch shooting Jgb) is ~ can see that in a certain regime of phase differ¢apgroxi-
after the crisis, in which mode<(, ) has been takefso ~ mately betweenr,_; andag_;), the PW partial wave can be
for clarity we did not connect the orbit points by lineShe  strongly increased. On average, its amplitige ; is larger
dashed line gives the amplitude of the carrier partial wavethan the carrier oné,_,, while in the remaining regime the
Ai=1. On the abscissa the two crosses indicate the stagnati@mplitudes are smaller thafy,_,. This phenomenon sug-
phase pointSaE*:Ul (minus 6,_,) of the linear SO/UO, re- gests that, as in the linear case of Sec. I, phaser phase
spectively(see Sec. I\ differenceA = ay— 6, plays a significant role. In the favor-

A remarkable difference can be seen when comparingble regime ofA,_,, the amplitudeb,_, is increased by the
Fig. 8(a) with Fig. 8b). In the first place, in accordance with carrier partial wave. In this case, if in addition their ampli-
Fig. 6, in Fig. §a) before the crisid,_,(7) remains smaller tudes are comparable, the two wave¥p,_(£,7) and
than the carrier amplitud&,_;. Then at the critical moment ¢g,_,(£), are approximately in resonance; on the other
when the crisis occurdy,-1(7) suddenly increases and sur- hand, in the unfavorable regimég,-, is damped by the
passesA,_;. After the crisis in Fig. &), by_1(7) can be latter, and they are not in resonance. As this process repeats
much larger thai\,_ ;. Furthermore, possibly more essential again and again, the amplitude 6é,_, is pushed up and
change occurs in the phaag_,(7) after crisis. In Fig. 8) down randomly by the potential of the carrier partial wave.
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This phenomenon indicates that a kind of on-off resonanceespectively, while after the crisis one PW partial wave is
occurs between thie=1 PW partial wave and the SSW par- free from the confinement of SSW; it experiences random
tial wave, which is responsible for the spatiotemporal chaotion-off resonance with the latter. It is concluded that this
motions after the crisis. on-off resonance is responsible for the turbulent behavior in
On the other hand, the other modes2,3,4... do not the STC state.
show such a dramatic difference before and after the crisis. In the parameter regime we are concerned with in the
Either before or after the crisis, the PW partial wave ampli-present work, one dimension turns out to be crucial in the
tudes remain smaller than those of the corresponding SSWnset of a crisis as a result of mode-mode couplings. How-
modes. ever, it does not exclude the fact that with parameter varia-
Whene<e,, e.9.,e=0.19, the motion of th&=1 partial  tions other dimensions may also display qualitatively differ-
wave is similar to Fig. @), which will not be presented here. ent behaviors, such ds=1, before and after crisis. If this
happens, it would cause more and more complicated turbu-
VI. DISCUSSION lent motions.

In the present work we further investigated the mecha-
nism of crisis-induced transition to STC that is relevant to
the existence of a saddle point in a nonlinear wave system
solution. Linear stable and unstable orbits of SSW are shown This work was supported by the National Natural Foun-
to be phase-locked, respectively. When the full nonlinearitydation of China(Grant No. 19675006 Project of Basic Re-
is considered, we find that the crisis also induces a stateearch of China “Nonlinear Science,” and partly supported
transition of one mode phase. Before the crisis, all the partidby the Foundation for Doctoral Training of National Educa-
waves of PW are well trapped in that of the carrier SSW.tion Committee of China.
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